
Sean McLennanSean McLennan
B651 - Dr. Michael Gasser

Indiana University
December 14, 1999

WordCat - Sean McLennan 1

1. Introduction
WordCat is a word recognition utility whose architecture was inspired by CopyCat, a system for

analogy-making (Mitchell, 1993). One of CopyCat’s most unique features is that the text it is

presented is a completely unanalyzed chunk. There are no control or delimiting characters — nothing

has an explicit effect on processing other than those letters that are directly perceivable and

manipulable by the system. I feel that this approach could be very valuable in a radically different

domain — text parsing.

Since a complete text parser of this type would be a dramatic undertaking, a sub-task is

required. I have chosen word recognition, what I consider to be the lowest level of text parsing of

this type. By saying that WordCat “recognizes words” I mean that it is presented “noisy” text —

words with typos or spelling mistakes — and WordCat supplies the closest match from its lexicon,

hopefully the intended word. WordCat was implemented in C++ and has two gross functions:

creating the network that is central to its functioning, and using said network for word recognition.

At this point, WordCat only recognizes words in isolation, not in context.

WordCat’s performance was tested by systematically altering arbitrary words that exist in its

lexicon and comparing them with its output. In general, WordCat performed well, making few

unreasonable errors and I believe the problem areas could be ameliorated by further implementing

CopyCat-like features.

Section 2 below discusses CopyCat and its most salient features with special attention to those

that have explicit analogs in WordCat. Section 3 details the design, implementation, and use of

WordCat itself and describes how it relates to CopyCat. Section 4 summarizes the results of the tests

performed (full results appear in Appendix D), and finally, section 5 discusses WordCat’s advantages,

limitations, promise, and applications.

2. CopyCat
CopyCat is an model of high-level perception and analogy making in a well defined microworld

designed by Douglas Hofstadter and Melanie Mitchell (Mitchell, 1993). The analogy problems with

which CopyCat works are strings of letters, for example:

WordCat - Sean McLennan 2

abc → abd
xyz →?

CopyCat’s task is to fill in the “?” by making an analogy of the transformation that occurs above. It

is not the analogy making process that I feel has particular value for text parsing at this stage. It is

that CopyCat builds all of its own structure based entirely on observations it makes concerning the

individual letters and their immediate neighborhoods.

CopyCat’s “knowledge” of its microworld consists of the successor / predecessor

relationships between the 26 letters of the alphabet, the numbers 1 to 5 (and their predecessor,

successor relationships), and a handful of “concepts” such as “left”, “right”, and “opposite”. CopyCat

is supplied a string of characters (implicitly providing information about which are the first and last

elements in the string) and no other information. CopyCat searches for similarities and

correspondences, eventually building a quite sophisticated, hierarchical structure that it uses to

produce a solution to the problem. This task is very similar to that of a bottom up text-parser —

given a string of characters, build a representation of the sentence.

There are four main aspects to CopyCat’s architecture: the Slipnet, the Workspace, the

Coderack, and the Temperature. All of these divisions rely integrally on stochastic, dynamical

processes that make the system as a whole non-deterministic.

2.1. The Slipnet
CopyCat’s Slipnet is where all of CopyCat’s “knowledge” is represented. It is important to note that

although it is similar to a neural network in that it contains nodes and links and employs spreading

activation, it is not intended to be a neural network. Each node in the network represents a single

concept and the links represent the relationship between nodes. Because there can be different types

of relationships (successor, predecessor, opposite, etc.), the links themselves are connected to

concept nodes that label the relationship and the “closeness” of the nodes (i.e. weight of the link) is

dependent on the activation of the label. Additionally, each node has a “depth” that is used in helping

determine the quality of the structure being built. Essentially, the more abstract the concept, the

deeper the node; and CopyCat likes deeper concepts. There is no learning in the Slipnet, although,

over the course of a problem, the dynamics of the network constantly change.

WordCat - Sean McLennan 3

Activations in the Slipnet are supplied by “Codelets” (described below) when they perceive

a similarity / structure / concepts in the inputted string. When the closeness of two nodes in the

Slipnet increases (corresponding to activation of the appropriate concept node), “Slippages” of

concept occur; that is, two structures or concepts are considered analogous. The result is a very

flexible tool for directing the search for a solution to the analogy problem.

2.2. The Workspace, Coderack, and Temperature
The Workspace is where CopyCat builds structure on its letter strings, simultaneously entertaining

several hypotheses that can be built up or destroyed until an acceptable solution is found. The

Coderack is a waiting area for Codelets which are small, independent, task specific bits of code that

act in the Workspace. Codelets are stochastically chosen from the Coderack to be run and do things

like “notice” facts about the Workspace, “seek out” particular hypothesized structures, place other

Codelets on the Coderack, supply activation to the Slipnet, and build / destroy structure in the

Workspace. They perform all of the work in CopyCat.

The decision process that allows CopyCat to stop working and produce a solution is also a

probabilistic process and is dependent on two factors: the Temperature and the amount of structure

built. The Temperature, in turn, is dependent on the amount of structure and the quality of the

structure (i.e. the system’s confidence that the structure is correct). If the Temperature is low, a great

deal of high quality structure has been found. Thus the Temperature is an assessment of the structure

built.

3. WordCat
The primary architectural feature of CopyCat that was focused on in WordCat was the Slipnet. The

network that WordCat uses similarly has Nodes of varying depth and links of different types that

reflect different relationships. However, unlike CopyCat where both link weights and activations

change over time, WordCat’s links remain static while the program is running. In fact, WordCat uses

no stochastic processes at all. Instead, it builds its network based on the observed letter transitions

in a supplied training text. Thus, the links in the network reflect the statistics of the language and

some degree of non-determinism is exhibited given that the inclusion or exclusion of a single word

WordCat - Sean McLennan 4

in the training text can sometimes have a dramatic effect across runs.

WordCat has an assessment of its current hypothesis — its “certainty” — that is analogous

to CopyCat’s Temperature and determines how long the program will work on a particular word.

WordCat’s Workspace is simply a list in which it makes and tests predictions. Finally, WordCat does

not implement anything like the Coderack or Codelets. It’s search, prediction, and decision paths are

completely static.

3.1. WordCat’s Network
Design:

WordCat’s Network is implemented in C++ lists of three types: Node, SuccConn (successor

connections / links), and FamConn (family connections / links). I chose lists primarily for the

flexibility they offer with regards to network size. There are three “depths” of nodes in WordCat:

D1 - single letters, D2 - letter pairs, and D3 - full words. As the number of depth 1 nodes increase,

so to do the letter pairs and links — exponentially. It is thus advantageous to include only those

nodes and links that are actually present in the training text, greatly reducing the number of nodes and

links, and helping to reflect the graphotactics of the language. By using lists, I was able to constantly

vary the text without having to determine new array sizes.

The tradeoff for this flexibility, however, is speed. WordCat does not employ sophisticated

searching or sorting algorithms and so creating and updating the network is very slow. For a network

of ~550 nodes and ~3000 links that was trained on a text of 300 words, it usually takes 30sec to a

minute or two to recognize a word. It can take anywhere from a few minutes to an hour to create

the network. This is a major drawback to WordCat, but it is primarily a flaw in the implementation,

not necessarily with the approach.

The Node class contains 3 pieces of information: the node’s name, the node’s depth, and the

node’s activation. There are two class of links, SuccConn and FamConn, that both contain the

predecessor of the link, the successor of the link, and the link’s weight. SuccConn links reflect the

transitions observed in the training text from single letters to the following letter and letter pair. Thus

SuccConn links exist between D1 nodes and (unidirectionally) between D1 and D2 nodes. FamConn

links on the other hand reflect “familial” relationships between the nodes. They exist unidirectionally

WordCat - Sean McLennan 5

Fig. 1 WordCat’s Network for the word
“cab”. “*” represents a space.

from D1 to D2 nodes (for example a → ca) and

bidirectionally between D2 and D3 nodes (ca ←←→→

can). D1→D2 and D3→D2 family links have

fixed weights and D2→D3 links are normalized

for word length. A diagram of WordCat’s

Network appears in Fig. 1.

Training Text:

The training text was constrained to the 26

lowercase letters, the apostrophe and asterix.

This was for size considerations; to reduce the

number of nodes and links. All characters are

capable of being used by WordCat - the only

real constraint being that the text to be

recognized only contain characters that appeared

in the training text. The apostrophe was

included to deal with contractions effectively

and the asterix represents the space character. A space character was included to provide information

about the beginnings and endings of words; the asterix was chosen for visibility and to simplify

manipulation since C++ treats the space as a default delimiter.

The text itself is a children’s story called the “The Mole and the Owl”. It appears in Appendix

A. A total of 800 words were formatted and networks were built from training texts of varying size.

Algorithms:

The algorithms used in building and using the network are not sophisticated. The link weights were

increased each time the same transition was observed in the training text simply by increasing the

value of the weight using the following formula:

myweight += (1-myweight)/20;

Thus the weight asymptotes at 1; the constant 20 was derived empirically through trial and error to

obtain a relatively broad range of weights.

Two types of related but subtly different statistics are stored in the network: transition

WordCat - Sean McLennan 6

occurrence statistics (whether a particular transition appears or does not appear), and transition

frequency statistics (how often a particular transition occurs). The former can be subsumed by the

latter, however, in terms of how WordCat uses the information, it is useful to draw a distinction.

I tried various methods of spreading activation through the network at times. Attempts

included varying decay rates for each depth, inhibition, recurrence, and both bottom-up and top-down

feedback on varying combinations of depths and links. However, in the few configurations that were

vaguely stable, the network showed a marked preference for the most frequent word, “a”, regardless

of the input. The only effective method was the simplest — input activation to the appropriate

node(s) and cycle once. This, contrary to my original vision, limits the effect that the frequency

statistics have on the output of the network. However, occurrence statistics play a critical role and

frequency statistics are still used in making repair predictions (discussed below).

Activation is spread through the network by resetting the activations of the nodes, copying

the node list to a temporary buffer, inputting the activations to the buffer, and systematically going

through each link, finding the appropriate predecessor in the buffer and summing the affects in the

original list of nodes. Again, this process is very slow but could easily be sped up by using a more

efficient methods.

3.2. Recognizing Words
The process of recognition in WordCat is divided into two primary areas illustrated in Fig. 2. The

left-hand box in the figure represents the initial checking of the letter string. The first two steps

(encircled in light grey) are repeated for each letter in the word being processed (including initial and

final spaces).

To determine “recognition predictions” WordCat inputs the current letter to the network,

cycles, and reads off the subsequently active nodes. These represent the previously trained

transitions, both single letters and letter pairs. WordCat then does the same for the following letter

and compares the two lists with what is actually in the input. If it finds a letter to letter pair transition

that is consistent with the input, it adds the letter pair to the workspace. If not, it adds nothing. This

portion of the processes does not rely on the relative activations of possible transition nodes. It is

an all or none prospect.

WordCat - Sean McLennan 7

Fig. 2. WordCat’s recognition decision flow chart

When WordCat finishes the entire word, the workspace has a collection of identified letter

pairs that are consistent with what was observed in the training text. Converting the input text into

letter pairs as individuals aids the process of recognition by emphasizing differences. For example,

compare the workspace representations of mountain and mouhtain that WordCat would have

after checking for letter pairs:

*m * mo m ou o un u nt n ta t ai a in i n* n *
*m * mo m ou o u h t ai a in i n* n *

In this case, a single letter difference in the input caused there to be a 3 letter pair discrepancy in the

identified forms.

The letter pairs are input to the network and cycled, resulting in activations in the D3 word

nodes. These words represent WordCat’s “best guesses” ordered by their relative activations. At

this point, if the word to be recognized is one that existed in the training text and it has not been too

badly damaged, it is usually WordCat’s first, sometimes second pick.

WordCat assesses the certainty of its number one best guess — a function of the activation

WordCat - Sean McLennan 8

of the best guess, the difference in activations of the first and second best guesses, and the word

length of the first and second best guesses relative to the originally input word:

top1fit = top1.activation - |top1.size - input.size|*10;
top2fit = top2.activation - |top2.size - input.size|*10;
certainty = top1fit + (top1fit - top2fit);

Certainties range from about -20 to 175. If the certainty is greater than 75 (a value that I empirically

found to give efficient results) then WordCat commits itself to that answer.

However, if the certainty is below 75, WordCat tries to repair the word (the right-hand box

of Fig. 2). First, WordCat tries to find the first problem area indicated by one of two things. It

determines the component letter pairs of the top two letter pairs (or the best guesses with the top two

activations in the case of a tie) and then finds the first identified letter pair that is not a component

of the best guesses. Alternatively, WordCat finds the first single letter node that does not have an

identified letter pair following it.

Once a problem spot has been found, WordCat re-determines possible letter transitions and

compares the resultant letter pairs with the original word, and the component letter pairs the best

guesses. Based on these comparisons, WordCat attempts to produce predictions for improving the

word. If it finds no predictions, it commits to its original best guess.

Usually, a list of 1-4 predictions is found and they are ordered according to activation — i.e.

by frequency of occurrence. WordCat continues to employ and assess the predictions until it runs

out or until the certainty increases. This process of checking the repaired word is the same as the

initial recognition (hence the left-hand box of Fig. 2. is repeated in miniature on the right). Each time

WordCat tries a prediction from this list, it is on the output of the initial recognition (i.e. it is not

iterative).

If the certainty goes above 75, WordCat commits to the number one best guess produced by

the repaired word. If the certainty increases but remains below 75, WordCat returns the repaired

word to the left-hand box of Fig. 2. to produce an entirely new set of predictions (i.e. iterative

repairs). The process continues until WordCat can produce no more predictions or until the certainty

goes above 75. It is seldom that more than two repairs of any type are made.

3.3. Using WordCat

WordCat - Sean McLennan 9

When the program is run, the user is presented with 3 options:

Enter 1 to create, 2 to use in command line, 3 to use with file.

“1” creates a network and saves it in a file, Network.txt, based on training text found in the file

Text.txt. “2” allows the user to enter words manually. “3” will recognize words contained in the

file 2bRecognized.txt and produce the results in the file Recognized.txt. Word in

Text.txt must be delimited by an asterix (including at the end of lines), and words in

2bRecognized.txt by spaces or the eol character.

4. Test Results
In order to test WordCat’s efficacy, I arbitrarily chose 4 words of varying lengths from the training

text and systematically altered them. I tested them on training sets of both 300 and 800 words and

found them to be comparable — the problem areas are the same. The results before are based on the

300 word training set trials. For interest’s sake, I also compare the same words with WordPerfect

7’s Spell-Checker although it is impossible to draw concrete conclusions from such a comparison.

The full results appear in Appendix D.

PercentPercent

% Correct

Overall correct (total = 55) 58%

words with no mistakes (total = 4) 100%

one error (total = 36) 67%

two errors (total = 15) 27%

small word size (total = 27) 44%

large word size (total = 28) 71%

% of errors

made

(total = 23)

on words with initial errors 43%

 on words with non-initial errors 56%

of errors with low certainty 30%

of reasonable errors 78%
Of 55 words that were tested, WordCat correctly recognized 58% of them (WordPerfect -

38%). WordCat shows two classes of errors: “unreasonable” and “reasonable”. By reasonable, I

WordCat - Sean McLennan 10

mean errors in which the recognized word was of equal or closer similarity to the input text than of

the intended form. For example, given the input “se” it is more reasonable to recognize “set” than

the intended “seas” since “set” is in fact a closer match. As well, if the certainty of the recognized

word is below the threshold of 75, I consider it a reasonable error since the system itself “realizes”

in some sense that something is wrong with the result. In these case, the system’s difficulty is in

finding predictions.

WordCat made a total of 5 “unreasonable” errors in the test set (marked by shading in

Appendix D). These errors can be generalized into two types: “input initial errors” and “subsumption

errors”. WordCat has a bias to make forward repairs; that is, it targets a problem area at the

beginning of the word and makes a correction to the following characters. Thus typos that occur at

the beginning of the word, will cause WordCat to fail.

Subsumption errors occur when the recognized letter pairs of an input word with mistakes

correspond more or less exactly to a shorter word in WordCat’s lexicon. For example:

infan: *i * in i nf n fa f an a n* n *
in: *i * in i n* n *

In this case, because the FamConn links have been normalized for word length, “in” will win over the

intended “infant”. Subsumption errors are mostly a result of the simple measure of certainty.

In general however, I consider WordCat at least as successful as commercial spell-checkers

since in all cases the intended word appears high on the list of possibilities.

5. Advantages, Limitations, and Improvements
In this incarnation, WordCat has some significant problems.

speed: WordCat could not currently be implemented in realtime having been trained on a

large training text with a reasonable vocabulary size.

biases: WordCat is better at recognizing larger words than smaller words and words that

have fewer similar counterparts in the training text. Both of these are understandable

and are endemic to the task as a whole — there is simply less information to make

predictions about in these cases. WordCat also shows other unreasonable biases,

towards the input initial and subsumption errors described above.

WordCat - Sean McLennan 11

determinism: Unlike CopyCat, WordCat uses no stochastic processing which limits its

flexibility.

However, there are several significant advantages to this approach.

universality: There is nothing in WordCat that is language specific. To change languages,

one simply needs to change the training text — even for Asian languages, the only

change that would required is to switch to double width character types.

expandability: Because WordCat works primarily with letters, the lowest level of text, there

are no limits to the type of statistics that could be represented and employed. In this

implementation, it was restricted to words and only letter pairs for time and flexibility

restrictions. Ideally, the transition statistics of larger units, including words and

phrases could be also extracted from training material. As well, based on exhibited

transitions, it would be possible to propose category-like nodes that could then also

be used in recording transition statistics similar to approaches to statistical linguistics

exemplified by Landauer and Dumais (1997), Elman (1995), and Seidenberg (1997).

Because WordCat is implemented at the letter level, this open up the possibility of

better characterizations of morphology. It could potentially also characterize

punctuation rules.

top-down and bottom-up processing: WordCat’s processing of text occurs in both a top-

down and bottom-up fashion. Although its implementation is not biologically

plausible, this combination of processing in both directions is “psychologically

plausible” (to borrow a term from Mitchell, 1993). It has the potential to characterize

a number of phenomena exhibited in human subjects such as priming.

Immediate improvements that could be made to this system that would increase its use and

efficacy, are of a few different types.

implementation: WordCat would be greatly sped up by implementing much more efficient

searching and sorting algorithms.

expanding to word level: Currently, the statistics represented in the network are only letter

to letter and letter to letter pair. Increasing that representation to the word level, I

WordCat - Sean McLennan 12

feel, would allow for better recognition of small and similar words by incorporating

grammatical relationships as well as graphotactic.

more prediction / error finding heuristics: the methods that WordCat uses for finding

problem areas, making predictions, and assessing the certainty of best-guesses are

very limited. There are dozens more criteria that could be included that would

increase WordCat’s performance and reduce its errors, although WordCat’s

architecture is currently not well suited to their inclusion.

adding stochastic processing: adding more CopyCat-like features to WordCat would

improve its flexibility and robustness. For example, Codelets and the Coderack are

perfectly suited to employing the heuristics that are mentioned above.

It seems significant that such a “dumb” system — simply recording transition statistics is

capable of performing so well on the task of word recognition. Overall, WordCat is successful as a

first step in testing the viability of employing CopyCat architectures in domains other than analogy-

making. And, more generally, WordCat lends weight to the increasingly popular hypothesis that

statistical relationships are important to the analysis and modeling of language.

WordCat - Sean McLennan 13

Appendix A: Training Text
100

he*dreamt*of*horizons*and*seas*of*canyons*and*moons*

of*mountains*and*stars*roads*and*lanes*appeared*wherever*he*

set*his*feet*the*evening*winds*of*a*new*season*

lay*at*his*back*and*the*wide*unknown*world*opened*

her*arms*whispering*come*away*the*mole*rose*to*follow*

and*woke*beneath*a*sky*of*spring*leaves*swaying*in*

the*afternoon*breeze*with*a*smile*then*a*sigh*then*

a*shrug*he*stood*dusted*off*and*continued*on*his*

way*in*a*small*clearing*at*the*heart*of*the*

wood*stood*the*elder*tree*high*in*its*silver*branches*

200

a*caucus*of*hoary*ravens*sat*brooding*their*eyes*jet*

as*ebony*their*wings*singed*white*by*time*a*clear*

brook*welled*soundlessly*from*the*tree's*knotted*roots*flowed*down*

a*steep*incline*and*arced*smoothly*over*a*low*bank*

into*the*river*the*mole*peered*from*behind*flowered*thickets*

he*knew*the*four*winds*gathered*here*whispering*news*of*

the*world*in*a*language*only*the*ravens*understood*all*

animals*from*the*proud*wolf*to*the*timid*sparrow*came*

when*in*need*and*bowed*before*the*dark*birds*taking*

a*deep*breath*the*mole*stepped*out*onto*the*path*

300

and*lifted*a*hand*in*greeting*back*again*he*said*

bowing*a*little*they*waited*as*he*ambled*forward*into*

the*thin*shadows*of*the*tree*hope*rose*in*his*

heart*this*was*as*close*as*they*had*ever*let*

him*come*before*it*had*always*been*not*yet*and*

come*in*a*fortnight*this*time*he*told*himself*they*

must*have*an*answer*the*winds*have*brought*news*the*

weight*of*age*was*all*around*he*felt*an*infant*

to*the*ravens*and*a*mayfly*to*the*tree*as*

he*came*near*he*gazed*up*into*its*branches*and*

400

WordCat - Sean McLennan 14

saw*a*net*in*which*time*itself*had*been*caught*

and*held*for*a*moment*his*consciousness*swept*into*the*

tree*as*a*leaf*is*drawn*by*a*swift*current*

into*the*heart*of*the*river*he*was*no*longer*

aware*of*ravens*nor*wind*nor*even*of*the*wood*

itself*but*only*of*himself*and*the*tree*he*felt*

the*age*of*the*world*in*an*instant*and*glimpsed*

himself*in*the*perspective*of*centuries*as*the*spell*of*

the*tree*fell*away*he*remembered*his*errand*and*stepped*

closer*still*heart*pounding*he*lifted*squint*eyes*and*whispered*

500

when*shall*i*see*her*again*after*a*pause*filled*

only*with*the*restless*news*of*the*wind*the*eldest*

raven*spoke*a*single*word*never*never*echoed*a*second*

never*tolled*a*third*and*a*fourth*for*a*moment*

the*mole*stood*motionless*waiting*as*his*heart*cracked*waiting*

for*the*fifth*raven*to*contradict*the*rest*but*the*

fifth*without*even*glancing*his*way*repeated*the*verdict*the*

last*mournful*never*fell*upon*him*bowing*his*head*he*

stood*gazing*at*the*ground*and*suddenly*felt*as*old*

as*the*tree*itself*the*ravens*of*the*brook*have*

600

spoken*the*mole*began*timidly*the*rooks*of*the*tree*

have*judged*your*wisdom*is*legend*you*are*older*than*

memory*has*the*sackcloth*council*ever*been*wrong*have*the*

ebon*elders*ever*spoken*in*haste*two*seasons*i*have*

waited*two*seasons*you*have*listened*to*the*winds*that*

are*witness*to*all*and*now*your*judgment*is*delivered*

and*the*word*is*never*but*love*he*ended*with*

a*quiet*smile*and*helpless*shrug*cannot*endure*the*word*

never*neither*sadness*nor*sympathy*shone*in*the*dark*eyes*

above*from*simple*feelings*and*brief*lives*the*ravens*were*

700

separated*by*a*gulf*of*years*they*had*forgotten*compassion*

long*before*the*mole*had*ever*been*in*need*of*

it*never*the*eldest*spoke*again*their*heads*one*by*

WordCat - Sean McLennan 15

one*sank*between*stiff*shoulders*their*eyes*closed*into*silver*

seams*their*attention*returned*to*the*voices*in*the*wind*

which*the*mole*could*only*feel*but*never*understand*he*

lowered*his*eyes*and*slowly*turned*away*unaware*that*birds*

were*singing*or*sunlight*shining*he*followed*the*widening*stream*

wherever*it*led*rusted*hearts*and*dusted*souls*never*is*

it*set*as*many*nevers*on*my*back*as*peaks*

800

on*a*mountain*this*is*love*you*sooty*birds*love*

yet*though*by*desire*brave*he*was*by*nature*timid*

his*frame*was*not*built*to*sustain*courage*and*he*

walked*on*in*whispers*hushed*by*doubt*i'll*wait*out*

the*world*for*you*love*i'll*extend*my*tunnels*to*

the*horizon's*ring*i'll*reach*for*you*as*the*tide*

reaches*for*the*moon*but*his*brave*promises*sounded*too*

brave*he*felt*suddenly*small*and*the*word*never*whispered*

in*his*mind*as*the*ocean*in*a*shell*falling*

slowly*to*his*knees*he*wept*without*a*sound*by*

WordCat - Sean McLennan 16

Appendix B: Training text size and network size

Training text size Nodes SuccLinks FamLinks

100 291 431 808

200 440 680 1558

300 547 802 2094

400 657 914 2582

500 733 1003 3070

600 818 1113 3654

700 896 1184 4196

800 990 1255 4648

300 and 800 were the networks that were used to assess WordCat’s performance.

Appendix C: Files Included
Wordcat.pdf - this document

Wordcat.exe - the program

Wordcat.cpp - main source code

Makecat.cpp - source code that makes the network

Usecat.cpp - source code that employs the network

Network.txt - the network file that WordCat makes / loads

Networkxxx.txt - network file trained on a training text of xxx words

Text.txt - the training text file WordCat uses to make the network

Mole&Owl.txt - full text used to train WordCat (Appendix A)

2bRecognized.txt - file used as input for WordCat

wclog300.txt - log of the run of the 300-network trials

Appendix D: Test Results: 300

not seas
manipulation form recognized certainty WP7 form recognized certainty WP7

original not not 177 not seas seas 154 seas

missing first letter ot on 178 of eas as 62 east

missing first 2 letters t to 168 t as as 158 as

missing last letter no to 178 no sea seas 124 sea

missing last 2 letters n to 168 n se set 140 se

missing center letter nt to 178 -- sas sat 144 --

missing 2 central letters N/A N/A N/A N/A ss seas 40 ss

changed first letter got it 23 got geas as 52 gas

changed central letter nyt not 77 not syas seas 154 says

changed last letter noh not 75 no seah seas 80 sea

changed 2 letters nyh new 150 -- syah sigh 112 shah

extra final letter notr not 115 not seasr seas 93 sear

extra initial letter jnot jet 117 not jseas as 22 seas

extra internal letter nbot not 157 not sebas seas 110 seas

Test Results: 300 con’t

infant mountains
manipulation form recognized certainty WP7 form recognized certainty WP7

original infant infant 174 infant mountains mountains 172 mountains

missing first letter nfant not 107 enfant ountains mountains 140 fountains

missing first 2 letters fant felt 140 fanned untains mountains 90 entwines

missing last letter infan in 77 infant mountain mountains 134 mountain

missing last 2 letters infa in 107 Inca mountai mountains 90 mountain

missing center letter infnt infant 86 infant mounains mountains 84 mountain

missing 2 central letters ifat it 79 fiat montins moons 96 montan

changed first letter gnfant infant 120 enfant gountains mountains 150 fountain

changed central letter inyant it 61 infant mouytains mountains 114 mountain

changed last letter infanh infant 116 infant mountainh mountains 170 mountain

changed 2 letters iyfaht infant 116 -- moyntahns moons 40 montan

extra final letter infantr infant 134 infant mountainsr mountains 160 mountains

extra initial letter jinfant infant 112 infant jmountains mountains 160 mountains

extra internal letter infbant infant 134 infant mounbtains mountains 124 mountains

Test Results: 800

not seas
manipulation form recognized certainty WP7 form recognized certainty WP7

original not not 144 not seas seas 144 seas

missing first letter ot or 158 of eas as 62 east

missing first 2 letters t the 104 t as as 158 as

missing last letter no no 158 no sea seas 134 sea

missing last 2 letters n no 148 n se see 90 se

missing center letter nt no 158 -- sas saw 150 --

missing 2 central letters N/A N/A N/A N/A ss seas 40 ss

changed first letter got not 77 got geas as 52 gas

changed central letter nyt net 150 not syas seas 144 says

changed last letter noh now 144 no seah seas 80 sea

changed 2 letters nyh now 144 -- syah sigh 112 shah

extra final letter notr not 134 not seasr seas 93 sear

extra initial letter jnot jet 117 not jseas as 22 seas

extra internal letter nbot net 90 not sebas seas 114 seas

Test Results: 800 con’t

infant mountains
manipulation form recognized certainty WP7 form recognized certainty WP7

original infant infant 172 infant mountains mountains 122 mountains

missing first letter nfant not 124 enfant ountains mountains 74 fountains

missing first 2 letters fant infant 34 fanned untains mountains 55 entwines

missing last letter infan in 77 infant mountain mountain 128 mountain

missing last 2 letters infa in 107 Inca mountai mountain 84 mountain

missing center letter infnt infant 86 infant mounain mountain 94 mountain

missing 2 central letters ifat it 118 fiat montin moon 94 montan

changed first letter gnfant infant 87 enfant gountain in 126 fountain

changed central letter inyant it 61 infant mouytain mountain 126 mountain1

changed last letter infanh infant 116 infant mountaih mountains 94 mountain

changed 2 letters iyfaht it 98 -- moyntahn mountain 104 montan

extra final letter infantr infant 134 infant mountainsr mountains 92 mountains

extra initial letter jinfant infant 112 infant jmountains mountains 94 mountains

extra internal letter infbant infant 134 infant mounbtains mountains 124 mountains

WordCat - Sean McLennan 21

References:
Elman, J. (1995) Language as as dynamical system. In R.F. Port & T. van Gelder (eds.). Mind as

Motion: Explorations in the Dynamics of Cognition. Cambridge, MA: MIT Press. 195-223.

Landauer, T., and S. Dumais. (1997) A solution to Plato's problem: The Latent Semantic Analysis
theory of acquisition, induction, and representation of knowledge. Psychological Review,
104:211-240.

Mitchell, M. (1993) Analogy-Making as Perception. Cambridge, MA: MIT Press.

Seidenberg, M. (1997) Language Acquisition and Use: Learning and Applying Probabilistic
Constraints. Science, 275:1599-1603.

